Defects in Motoneuron-Astrocyte Interactions in Spinal Muscular Atrophy.

نویسندگان

  • Chunyi Zhou
  • Zhihua Feng
  • Chien-Ping Ko
چکیده

Spinal muscular atrophy (SMA) is a motoneuron disease caused by loss or mutation in Survival of Motor Neuron 1 (SMN1) gene. Recent studies have shown that selective restoration of SMN protein in astrocytes partially alleviates pathology in an SMA mouse model, suggesting important roles for astrocytes in SMA. Addressing these underlying mechanisms may provide new therapeutic avenues to fight SMA. Using primary cultures of pure motoneurons or astrocytes from SMNΔ7 (SMA) and wild-type (WT) mice, as well as their mixed and matched cocultures, we characterized the contributions of motoneurons, astrocytes, and their interactions to synapse loss in SMA. In pure motoneuron cultures, SMA motoneurons exhibited normal survival but intrinsic defects in synapse formation and synaptic transmission. In pure astrocyte cultures, SMA astrocytes exhibited defects in calcium homeostasis. In motoneuron-astrocyte contact cocultures, synapse formation and synaptic transmission were significantly reduced when either motoneurons, astrocytes or both were from SMA mice compared with those in WT motoneurons cocultured with WT astrocytes. The reduced synaptic activity is unlikely due to changes in motoneuron excitability. This disruption in synapse formation and synaptic transmission by SMN deficiency was not detected in motoneuron-astrocyte noncontact cocultures. Additionally, we observed a downregulation of Ephrin B2 in SMA astrocytes. These findings suggest that there are both cell autonomous and non-cell-autonomous defects in SMA motoneurons and astrocytes. Defects in contact interactions between SMA motoneurons and astrocytes impair synaptogenesis seen in SMA pathology, possibly due to the disruption of the Ephrin B2 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy

Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced beta-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)-deficient motoneurons exhibit severe defe...

متن کامل

Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of alpha motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron dev...

متن کامل

Temporal requirement for SMN in motoneuron development.

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a ...

متن کامل

Fishing for a mechanism: using zebrafish to understand spinal muscular atrophy.

Motoneuron diseases cause paralysis and death due to loss of motoneurons that innervate skeletal muscle. Spinal muscular atrophy is a human motoneuron disease that is genetically linked to the survival motor neuron gene (SMN). Although SMN was identified more than a decade ago, it remains unclear how decreased levels of the SMN protein cause spinal muscular atrophy. The use of animal models, ho...

متن کامل

Differentiation defects in primary motoneurons from a SMARD1 mouse model that are insensitive to treatment with low dose PEGylated IGF1

Muscle atrophy and diaphragmatic palsy are the clinical characteristics of spinal muscular atrophy with respiratory distress type 1 (SMARD1), and are well represented in the neuromuscular degeneration (Nmd(2J) ) mouse, modeling the juvenile form of SMARD1. Both in humans and mice mutations in the IGHMBP2 gene lead to motoneuron degeneration. We could previously demonstrate that treatment with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 8  شماره 

صفحات  -

تاریخ انتشار 2016